42 research outputs found

    Method for ambiguity resolution in range-Doppler measurements

    Get PDF
    A method for resolving range and Doppler target ambiguities when the target has substantial range or has a high relative velocity in which a first signal is generated and a second signal is also generated which is coherent with the first signal but at a slightly different frequency such that there exists a difference in frequency between these two signals of Delta f(sub t). The first and second signals are converted into a dual-frequency pulsed signal, amplified, and the dual-frequency pulsed signal is transmitted towards a target. A reflected dual-frequency signal is received from the target, amplified, and changed to an intermediate dual-frequency signal. The intermediate dual-frequency signal is amplified, with extracting of a shifted difference frequency Delta f(sub r) from the amplified intermediate dual-frequency signal done by a nonlinear detector. The final step is generating two quadrature signals from the difference frequency Delta f(sub t) and the shifted difference frequency Delta f(sub r) and processing the two quadrature signals to determine range and Doppler information of the target

    Retrieve Optically Thick Ice Cloud Microphysical Properties by Using Airborne Dual-Wavelength Radar Measurements

    Get PDF
    An algorithm to retrieve optically thick ice cloud microphysical property profiles is developed by using the GSFC 9.6 GHz ER-2 Doppler Radar (EDOP) and the 94 GHz Cloud Radar System (CRS) measurements aboard the high-altitude ER-2 aircraft. In situ size distribution and total water content data from the CRYSTAL-FACE field campaign are used for the algorithm development. To reduce uncertainty in calculated radar reflectivity factors (Ze) at these wavelengths, coincident radar measurements and size distribution data are used to guide the selection of mass-length relationships and to deal with the density and non-spherical effects of ice crystals on the Ze calculations. The algorithm is able to retrieve microphysical property profiles of optically thick ice clouds, such as, deep convective and anvil clouds, which are very challenging for single frequency radar and lidar. Examples of retrieved microphysical properties for a deep convective clouds are presented, which show that EDOP and CRS measurements provide rich information to study cloud structure and evolution. Good agreement between IWPs derived from an independent submillimeter-wave radiometer, CoSSIR, and dual-wavelength radar measurements indicates accuracy of the IWC retrieved from the two-frequency radar algorithm

    Retrieval of Raindrop Size Distribution, Vertical Air Velocity and Water Vapor Attenuation Using Dual-Wavelength Doppler Radar Observations

    Get PDF
    Two techniques for retrieving the slope and intercept parameters of an assumed exponential raindrop size distribution (RSD), vertical air velocity, and attenuation by precipitation and water vapor in light stratiform rain using observations by airborne, nadir looking dual-wavelength (X-band, 3.2 cm and W-band, 3.2 mm) radars are presented. In both techniques, the slope parameter of the RSD and the vertical air velocity are retrieved using only the mean Doppler velocities at the two wavelengths. In the first method, the intercept of the RSD is estimated from the observed reflectivity at the longer wavelength assuming no attenuation at that wavelength. The attenuation of the shorter wavelength radiation by precipitation and water vapor are retrieved using the observed reflectivity at the shorter wavelength. In the second technique, it is assumed that the longer wavelength suffers attenuation only in the melting band. Then, assuming a distribution of water vapor, the melting band attenuation at both wavelengths and the rain attenuation at the shorter wavelength are retrieved. Results of the retrievals are discussed and several physically meaningful results are presented

    Measurements and Simulations of Nadir-Viewing Radar Returns from the Melting Layer at X- and W-Bands

    Get PDF
    Simulated radar signatures within the melting layer in stratiform rain, namely the radar bright band, are checked by means of comparisons with simultaneous measurements of the bright band made by the EDOP (X-band) and CRS (W-band) airborne Doppler radars during the CRYSTAL-FACE campaign in 2002. A stratified-sphere model, allowing the fractional water content to vary along the radius of the particle, is used to compute the scattering properties of individual melting snowflakes. Using the effective dielectric constants computed by the conjugate gradient-fast Fourier transform (CGFFT) numerical method for X and W bands, and expressing the fractional water content of melting particle as an exponential function in particle radius, it is found that at X band the simulated radar bright-band profiles are in an excellent agreement with the measured profiles. It is also found that the simulated W-band profiles usually resemble the shapes of the measured bright-band profiles even though persistent offsets between them are present. These offsets, however, can be explained by the attenuation caused by cloud water and water vapor at W band. This is confirmed by the comparisons of the radar profiles made in the rain regions where the un-attenuated W-band reflectivity profiles can be estimated through the X- and W band Doppler velocity measurements. The bright-band model described in this paper has the potential to be used effectively for both radar and radiometer algorithms relevant to the TRMM and GPM satellite missions

    NASA's Hurricane and Severe Storm Sentinel (HS3) Investigation

    Get PDF
    The National Aeronautics and Space Administrations (NASA) Hurricane and Severe Storm Sentinel (HS3) investigation was a multi-year field campaign designed to improve understanding of the physical processes that control hurricane formation and intensity change, specifically the relative roles of environmental and inner-core processes. Funded as part of NASAs Earth Venture program, HS3 conducted five-week campaigns during the hurricane seasons of 2012-14 using the NASA Global Hawk aircraft, along with a second Global Hawk in 2013 and a WB-57f aircraft in 2014. Flying from a base at Wallops Island, Virginia, the Global Hawk could be on station over storms for up to 18 hours off the East Coast of the U.S. to about 6 hours off the western coast of Africa. Over the three years, HS3 flew 21 missions over 9 named storms, along with flights over two non-developing systems and several Saharan Air Layer (SAL) outbreaks. This article summarizes the HS3 experiment, the missions flown, and some preliminary findings related to the rapid intensification and outflow structure of Hurricane Edouard (2014) and the interaction of Hurricane Nadine (2012) with the SAL

    Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    Get PDF
    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown

    Airborne Radar Observations of Severe Hailstorms: Implications for Future Spaceborne Radar

    Get PDF
    A new dual-frequency (Ku and Ka band) nadir-pointing Doppler radar on the high-altitude NASA ER-2 aircraft, called the High-Altitude Imaging Wind and Rain Airborne Profiler (HIWRAP), has collected data over severe thunderstorms in Oklahoma and Kansas during the Midlatitude Continental Convective Clouds Experiment (MC3E). The overarching motivation for this study is to understand the behavior of the dualwavelength airborne radar measurements in a global variety of thunderstorms and how these may relate to future spaceborne-radar measurements. HIWRAP is operated at frequencies that are similar to those of the precipitation radar on the Tropical Rainfall Measuring Mission (Ku band) and the upcoming Global Precipitation Measurement mission satellite's dual-frequency (Ku and Ka bands) precipitation radar. The aircraft measurements of strong hailstorms have been combined with ground-based polarimetric measurements to obtain a better understanding of the response of the Ku- and Ka-band radar to the vertical distribution of the hydrometeors, including hail. Data from two flight lines on 24 May 2011 are presented. Doppler velocities were approx. 39m/s2at 10.7-km altitude from the first flight line early on 24 May, and the lower value of approx. 25m/s on a second flight line later in the day. Vertical motions estimated using a fall speed estimate for large graupel and hail suggested that the first storm had an updraft that possibly exceeded 60m/s for the more intense part of the storm. This large updraft speed along with reports of 5-cm hail at the surface, reflectivities reaching 70 dBZ at S band in the storm cores, and hail signals from polarimetric data provide a highly challenging situation for spaceborne-radar measurements in intense convective systems. The Ku- and Ka-band reflectivities rarely exceed approx. 47 and approx. 37 dBZ, respectively, in these storms

    The Coplane Analysis Technique for Three-Dimensional Wind Retrieval Using the HIWRAP Airborne Doppler Radar

    Get PDF
    The coplane analysis technique for mapping the three-dimensional wind field of precipitating systems is applied to the NASA High Altitude Wind and Rain Airborne Profiler (HIWRAP). HIWRAP is a dual-frequency Doppler radar system with two downward pointing and conically scanning beams. The coplane technique interpolates radar measurements to a natural coordinate frame, directly solves for two wind components, and integrates the mass continuity equation to retrieve the unobserved third wind component. This technique is tested using a model simulation of a hurricane and compared to a global optimization retrieval. The coplane method produced lower errors for the cross-track and vertical wind components, while the global optimization method produced lower errors for the along-track wind component. Cross-track and vertical wind errors were dependent upon the accuracy of the estimated boundary condition winds near the surface and at nadir, which were derived by making certain assumptions about the vertical velocity field. The coplane technique was then applied successfully to HIWRAP observations of Hurricane Ingrid (2013). Unlike the global optimization method, the coplane analysis allows for a transparent connection between the radar observations and specific analysis results. With this ability, small-scale features can be analyzed more adequately and erroneous radar measurements can be identified more easily

    Overview of the Field Phase of the NASA Tropical Cloud Systems and Processes (TCSP)Experiment

    Get PDF
    The Tropical Cloud Systems and Processes experiment is sponsored by the National Aeronautics and Space Administration (NASA) to investigate characteristics of tropical cyclone genesis, rapid intensification and rainfall using a three-pronged approach that emphasizes satellite information, suborbital observations and numerical model simulations. Research goals include demonstration and assessment of new technology, improvements to numerical model parameterizations, and advancements in data assimilation techniques. The field phase of the experiment was based in Costa Rica during July 2005. A fully instrumented NASA ER-2 high altitude airplane was deployed with Doppler radar, passive microwave instrumentation, lightning and electric field sensors and an airborne simulator of visible and infrared satellite sensors. Other assets brought to TCSP were a low flying uninhabited aerial vehicle, and a surface-based radiosonde network. In partnership with the Intensity Forecasting Experiment of the National Oceanic and Atmospheric Administration (NOAA) Hurricane Research Division, two NOAA P-3 aircraft instrumented with radar, passive microwave, microphysical, and dropsonde instrumentation were also deployed to Costa Rica. The field phase of TCSP was conducted in Costa Rica to take advantage of the geographically compact tropical cyclone genesis region of the Eastern Pacific Ocean near Central America. However, the unusual 2005 hurricane season provided numerous opportunities to sample tropical cyclone development and intensification in the Caribbean Sea and Gulf of Mexico as well. Development of Hurricane Dennis and Tropical Storm Gert were each investigated over several days in addition to Hurricane Emily as it was close to Saffir-Simpson Category 5 intensity. An overview of the characteristics of these storms along with the pregenesis environment of Tropical Storm Eugene in the Eastern Pacific will be presented
    corecore